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TWE STABILITY OF THE SOLUTfONS OF SOME BOUNDARY- 
VALUE PROBLEMS FOR ~PERBOLIC E~UA~ONS~ 
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Moscow 

The behaviour of the solutions of Iinear hyperbolic equations is investigated as t--am in the half-space x>O, 

-m<y,<m,a=1,2 ,‘.., r, with boundary conditions defined on the boundary x = 0. The equations and 

the boundary condition are assumed to be homogeneous with respect to the order of differentiation and ali 

coefficients are assumed to be constant, A problem of this type has been pre~ousIy studied in detail in 

connection with the stability of shock waves in gas dynamics [l-4] and some particular results have also 

been obtained for ma~n~tohydrodynamic shocks [S-7]. 

In general, as will be shown below, the disturbances may have the same types af behaviour as t-+ m as in 

[2, 41: the disturbances increase exponentially {instabi~ity~, decay as a power function (stability), or remain 

bounded (neutr& stability). The transitions of the system to an unstable, stable, and neutrally stable state 

are investigated and the criteria for these transitions are derived. These criteria are used to establish the 

existence of neutrally stable magnetohydrodynamic shocks even in the case of an ideal gas, a phenomenon 

that has not been previously documented [5-71. The existence af an a priori bound on the solution has been 

proved for these systems in cases of stability and neutrat stability [8,9]. 

The interaction of disturbances with the boundary in the case of neutral stability produces a non-smooth 

solution, so that the a priori bound of [9] is unimprovable. An elementary ~xpianation of this effect is 

proposed. it is shown that the addition of small non-differential terms to the equations and the boundary 

conditions does not cause the problems to become ill-posed if the parameters of the original problem ensure 

neutral stability. 

The behaviour of disturbances on the boundary of the half-space is described by the solution of the 

Cauchy probtem for some systems of partial differential equations of a high order with special conditions on 

the external forces and the initial values. This result is similar to that observed in gas dynamics [IO]. 

The stability of solutions with boundary conditions at x = 0 for x>O and x<O is analysed similarly and 

does not require a separate treatment. 

1. FORMAL CONSTRUCTION OF THE FOURIER-LAPLACE SOLUTION 

FOR A system of linear hyperbolic equations with constant coefficients 

E~+A~+B+=O, a -= I,&.* .r 
rx 

(U is a column vector and E, A, B are pt x n matrices) in the half-space x > 0, -to <ye < 00 ‘r consider 
the mixed boundary-value problem 

t=O:U=-U,(.X,y,) (1.2) 
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Here El, C and D, are constant m x n matrices, m G n. The number m of boundary conditions for 
x = 0 is chosen so that the problem is well-posed [ll] (see below). 

We will solve problem (1. l), (1.2) by applying a Fourier transformation to the function 
U (x, ya , t) with respect to the variables y, and a Laplace transformation with respect to the variable 
t. Thus 

m 00 

u= (x, z, k,) = -!- I a e-ikulJa dy, . . . dy, & 
GwP _-m s U (5, y,, t) e-” dt 

--Q) 

Setting z = -ikCl, k = (k12 + kz2 + . . . + k,2)1’2 (C! is the phase velocity of propagation of waves in 
the direction of the vector k perpendicular to the x-axis), we rewrite problem (1. l), (1.2) in the form 

A dUL 
ds + ik(B---QE)U= = EUoF (5, k,), (B = + Ba) (1.3) 

rz.O:C$+ik(D - QEl) U= = E’UoF (0, Fc,), (I& == -+ Da) (1.4) 

X-+00: )U~I<cc (1.5) 

where UcF(~, k,) is the Fourier transform of the function Uc(x, yu). Further analysis is conducted 
for fixed values of the wave-vector components {k, }. 

The characteristic matrix of the system of equations (1.3) has the form 

M, =-: A-’ (li:B - Z&E) i-. Zi)LE 

The roots Aj of the characteristic equation det M, = 0 are independent of k because system (1.1) is 
homogeneous with respect to the order of differentiation. Since system (1.1) is hyperbolic, it follows 
that as R+ ~0 the matrix M, has n linearly independent eigenvectors IV) that correspond to the roots 
A = Aj which are real for real R. For R = O(l), the roots A. may become complex and there exists a 
set of isolated values &,” such that hi (f&O) = Aj (Go) and ld)(&‘) III”’ (a,‘). Therefore, for all other 
R the solution of system (1.3) obtained by the method of variation of constants is written in the form 

UL _ i cjol(jieihjkx + i l(i)eilijkxRj (X) 
f-1 i=1 

Rj (T) = 7 [L-‘A-lUoFJj e-i’lk5dg 

(1.6) 

rl 

Here L is the II x n matrix whose columns are the eigenvalues IO) and Cj" are arbitrary constants to be 
determined from conditions (1.4), (1.5). The constants Xj will be chosen later. 

All the roots of the characteristic equation are divided into two groups: the first group contains 
the roots {A,}: ImA,> (4 = 1,2, . . . , s) and the second group the roots { hi} : Im Xi < 0 (i = s + 1, 
s, +2, . . . . n). This grouping is done for Ima+ 1, i.e. in that part of the half-plane 0 which 
contains the integration path for the Laplace transform. Note that in order to separate the roots in 
the entire @plane, we need to pass cuts Zq,i between the branching points of the roots of the first and 
the second groups. These points form the set (a,) and are part of the previously introduced set 
{no’} of branching points of the multivalued function A (a). 

We will show that the set {Ro} lies on the real axis. Since system (1.1) is hyperbolic and 
homogeneous with respect to the order of differentiation, its solutions have the stability property: 
Im A # 0 for Im 0 > 0. The branching points of the roots from different groups therefore do not lie in 
the upper Q half-plane. The problem is reversible in time, which corresponds to a simultaneous sign 
change of fl, k, and A; therefore the branching points do not lie in the lower R half-plane either. 

Substituting (1.6) into (1.5), we find that cio = 0 (i = s+ 1, . . . , n), and the constants cqo (q = 
1 * ., s) are determined from system (1.5). A necessary condition for the problem to be well-posed 
ii thus the equality s = m [ll]. The final result can be written in the form 
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(1.7) 

co = W1-’ IW,R, +- iV”U, r (0, &)I, c3 == {cq”}, q = 1, 2, . . ., m 

(W,, W,) SE W, W,,! = j.$G$‘l$? g = 1,2, . . ., n; q = 1, . . . m 

G(g) = -QE’ f J,,C -{- D, V” zz- __E’ f VJ_,-‘A-’ 

V q,, = ,$CqP$“, q = 1, 2. . ., m, p = 1,2, . . . . n 

Rj (z) = j [L-lA-lUoF (t, ka)]j eihjr’ d’, 

xi 

R,j = Rj /x=0, 
0, j=l,...,m 

Xj = 
cm, j=mfi,...,u 

The matrix WI is formed by the first m columns of the matrix W and corresponds to waves moving 
away from the boundary. The matrix W2 formed by the next n -m columns of W corresponds to 
arriving waves. 

Now, inverting the Laplace transform and shifting the integration contour down in the Q-plane as 
shown in Fig. 1, we obtain an asymptotic expression for the solution for t-_, CQ , x = const: 

The summation is over all residues of the function UL(Cn) and all cuts Z, passed between the 
branching points of the roots from different groups (a cut is shown in Fig. 1 by a dashed line). On 
the right-hand side, we have omitted the rapidly decaying integral over the horizontal part of the 
integration contour. We retain in (1.8) only the integrals over the cuts between the branching points 
of the roots from different groups, because these roots occur in the solution of the problem in a 
different form (the matrix WI contains only the first-group roots, while the matrix W2 contains only 
second-group roots). 

Therefore, the solution UL changes as we move around the branching points of the roots from 
different groups. When we circle the branching point of the roots from the same group, only the 
indexing of the roots within the group changes and UL remains unchanged. 

2. CONTRIBUTION OF THE INTEGRALS OVER THE CUTS TO THE ASYMPTOTIC 

BEHAVIOUR 

Let us study the asymptotic behaviour as t-+ 00 of the integrals over the cuts Zh in equality (1.8). 
The asymptotic behaviour as t+ CQ of the integrals over the cuts is determined only by the top-most 
parts of the integration contours. Therefore, each branching point makes an independent 
contribution to the asymptotic behaviour. If the two values of the function h(R) are equal at a 
branching point, then the integrand UL(Q) (the arguments k, and x are assumed constant and 
therefore omitted) can be represented in the form 

t 

FIG. 1. 
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where 00 is a branching point and UoL and UzL are analytical functions. In the general position, the 
function UIL takes a finite value for 0 = Q-, (this can be obtained from (1.7); for gas dynamics, see 
[2]), and integration over the cut in the neighbourhood of the branching point produces the 
principal asymptotic term of the form 

-im 
U F (1) - ct-?+-‘kQ,’ I c - 2UL (Q j e--it l/Ed{, E = (_O_ -a,) t 

If the function UIL (a) behaves as (0 - ,nO)-‘, which is possible in singular cases, when the pole 
and the branching point of U’(Q) coincide, then /U”(t) 1 -ct-‘“exp(-&C&t). These versions of 
the asymptotic behaviour match the results of [2] for gas dynamics. 

We note without derivation that along the rays x/t = const the asymptotic behaviour of the 
solution is determined by the saddle point (as in the case without a boundary) and the time 
dependence of the principal asymptotic term in the general position is typical of dispersing waves: 
1 UF(t) ) -t-l’* (for k, = const the waves have a dispersion along x). We thus conclude that the 
existence of a boundary produces additional damping of the waves that propagate along the surface 
of discontinuity and this in general leads to the asymptotic behaviour [ UF(t) I- tv3’*. 

The explanation of this effect is that for disturbances propagating along the boundaries (and it is 
these disturbances that correspond to the points In,, see below) the reflection coefficient is - 1. This 
is att~butable to the equality at the branching point of the eigenvectors of the matrix l&f, that 
correspond to the incident and the reflected waves. The disturbance reflected from the boundary is 
jointly annihilated with the incident disturbance in the principal term. 

3. THE CONTRIBUTION OF RESIDUES TO THE ASYMPTOTIC BEHAVIOUR 

The residues of the function UL(St), as follows from (1.7), are the zeros of the determinant 
D,= det W1. Having passed the cuts I ,+, we can select the single-valued branch of the function 
D,(a), which is obtained by continuation from the upper 0 half-plane. It is this single-valued 
branch that is considered in what follows. 

Let us investigate its behaviour on the real axis a. It follows from (1.7) that the function D, is 
real-valued on the sections of the real axis where all h corresponding to outgoing waves are real. On 
the other hand, on the sections of the real axis ft where at least one pair of complex-conjugate roots 
A exists (these roots always belong to different groups, see Sec. l), the function D, is complex- 
valued. 

This follows from the fact that, for any pair of complex conjugate roots, only one root corresponds to 
outgoing waves, and this root is included in D,. In the general position, Im D, # 0 since all the coefficients in 

D, are real. 

As we have noted before, the hyperbolic type of the system implies that for large real J2 all hj and 
D,(Q) are real. By the Schwarz theorem of analytical continuation, the function D,,,(Q) takes 
complex-conjugate values at complex-conjugate points. If this function has complex roots, the 
solution U"(+ ) contains a com~nent that ex~nentially increases with time with a growth rate that 
tends to infinity ask+ CQ, i.e. problem (l.l), (1.2) is ill-posed. If D,(Q) has only real roots, then the 
vector UF(t) is bounded as t-+ m and in general does not tend to zero (neutral stability). 

4. THE CONDITIONS FOR A TRANSITION BETWEEN DIFFERENT TYPES OF 

ASYMPTOTIC BEHAVIOUR OF THE SOLUTIONS 

We will now give a geometrical interpretation of the results. To this end, consider the group 
velocity diagram, which describes the propagation of a weak shock from a point source after a unit 
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FIG. 2. 

of time. Assume that the source is at the origin 0 (Fig. 2), the y-axis corresponds to the position of 
the boundary x = 0, and the curve L is the group velocity diagram. The figure shows the part of the 
diagram in the region x < 0 (arriving waves). 

Consider some point y = fi on the y-axis sufficiently far from the point 0. Each tangent drawn 
from fi to L gives the direction of propagation of the wave corresponding to the chosen fi [a is the 
quantity from Eq. (1.3)]. The root A (J2) of the characteristic equation corresponding to this wave is 
real. With a complex A (a), it is impossible to construct the corresponding tangent from the point Q 
to L. If the tangency point (Q * in Fig. 2) lies to the right (to the left) of the y-axis, the 
corresponding wave is an outgoing (arriving) wave with respect to the boundary. 

As we have noted above, all X are real for large R, i.e. II tangents to the group velocity diagram 
may be drawn from the point y = a. The branching points of the function UL (a) arise only in cases 
when fi coincides with Qo’ -the point of intersection of the group velocity diagram with the y-axis. 

Indeed, when the roots A coincide, the directions of the tangents drawn from the corresponding point 
Sz = Ro’ also coincide. If the tangency points do not coincide, then in the general position the eigenvectors 
characterizing the waves that correspond to these points are different, and the solution UL(n) does not have 
singularities in the neighbourhood of the point h’. On the other hand, the tangency points may coincide only 
on the y-axis, because group velocity diagrams do not have points of inflection. The last assertion is a 
consequence of the fact that for a hyperbolic system each direction of the normal corresponds to the sa.me 
number of characteristic velocities (which is equal to the order of the system). 

Thus, on the real axis a, the number of real roots X(n) may change only at the point Q = Rol that 
correspond to the intersection of the group velocity diagram with the y-axis. These points delimit 
sections of the real axis fi where all h (Sz) are real and they are the branching points of the function 
V(n). 

Let us consider how the complex roots of Q,,(a) can be shifted to the real axis by changing the 
system parameters. When the last complex root reaches the real axis, the system passes from an 
unstable to a stable or a neutrally stable state. 

A root of D,,,(a) may reach the real axis either at infinity or at a finite point of the axis. We will 
start with the first case. Let fi+ 03 as H+H”, where H is a vector in the space of the system 
parameters. Then, by the hyperbolicity of system (l.l), Xj-U@, where Uj are the reciprocals of the 
characteristic velocities, and D, is reduced to a polynomial: 

D*, (Q) - b&2”’ + b&Yk + . . . = 0 

where bo+O as H+H’. Then as H+H” we obtain Rk = -bllbo, be0. 
In the general position, ~bol~Z##O for H= Ho and therefore b. changes its sign in the 

neighbourhood of the point Ho as we cross the surface ‘co defined by the equation bo(Hi) = 0. 
Therefore, R remains real for k = 1 on both sides of the surface Z. and the complex-valued root 
does not go to the real axis. If k = 2, then 0 = +i(b1/b0)1’2 for bllbo>O and fi is real for b,lb,<O. 
Thus, for k = 2, we have a transition from instability to neutral stability. For k = 2, the surface X0 is 
the boundary between the zones of instability and neutral stability in the space of system 
parameters. If k>3, then regardless of the sign of bllbo, for H close to Ho the function D,(a) has a 
zero in the upper half-plane, i.e. the type of solution is preserved. 

Note that the case k = 2 is exceptional, because in general k = 1. However, there is an important group of 
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applied problems which are invariant under the change of y to -y (gas-dynamic shocks and some special cases 
of MI-ID shocks). In these problems, Q,,(n) is an even function. 

Now suppose that as Z-Z+ Ho the complex-conjugate roots of the function D, reach the real axis Cl 
at a finite point R. that lies outside the cuts Zh, which are now passed on the real axis Q between 
branching points. Then D,,,(n) has a multiple root at this point, and this root is of multiplicity two in 
the general position. As the parameters are changed further, the roots become real. The surface C1 
in the space H on which this happens is another boundary between instability and neutral stability. 

If the root crosses from the complex plane to the real axis on some cut Z, , then further change of 
the parameters causes the root to escape from the given sheet of the Riemannian surface and it 
ceases to make a contribution to the solution. 

Yet another possibility of the appearance of a real zero of the function D,,,(0) is when the root 
moves from the cut to the real axis. At the instant it reaches the real axis, the zero (a simple zero in 
the general position) coincides with a branching point of the roots of the characteristic equation. 
The coincidence of the zero with a branching point may constitute a boundary (in the parameter 
space, this is some surface C,) between stability [when D,,,(o) does not have roots on the given 
sheet of the Riemannian surface] and neutral stability [when the roots of D,,,(n) are on the real 
axis]. It is in this case that we obtain the asymptotic behaviour ( UF( - t-l” noted in Sec. 2. 

It follows from these results that the region of neutral stability ON is of the same dimensions as the 
parameter space of problem (l.l), (1.2). Therefore, for each interior point of parameter space, 
problem (l.l), (1.2) is stable, i.e. small changes in the coefficients of system (1.1) and the boundary 
conditions (1.2) for x = 0, t3 0 do not produce a solution of a new type. 

5. THE WELL-POSED FORM OF PROBLEMS, NON-HOMOGENEOUS WITH RESPECT TO 

THE ORDER OF DIFFERENTIATION 

If we modify the formulation of our problem by introducing additional non-differential terms into 
Eqs (1.1) and the boundary conditions (1.2), the problem will remain well-posed if the original 
problem was well-posed. Indeed, since the ill-posed properties may manifest themselves for large 
kfi, when the additional terms are small, the increment Afl of the root C& of the equation 
o,(n) = 0 is obtained from the equality 

a (AQ)t + bk-’ = 0 

where the first term is the principal part of the increment D, (@ + An) - D, (Cl) (fis the multiplicity 
of the root Sz,) and the second term is the value for R = fl, of the additional terms that occur in the 
equation for R when the problem is modified as suggested above. The factor k-l is associated with 
the lower order of differentiation of the additional terms compared with the original terms. 

The transition to an ill-posed problem (and hence to instability) due to the appearance of new 
terms is possible only when L$ is a real root. If it is simple (f = l), then AR is of the order k-‘, and 
the corresponding increment kACl is bounded as k + ~4. Thus, the problem remains well-posed in 
this case, but instability with a bounded growth rate may arise. This conclusion does not apply for 
f 3 2; however, as we have seen, the presence of a multiple real root fi corresponds to a boundary of 
the stability region in parameter space. 

Instability or ill-posed behaviour may also develop as a result of the displacement of a branching 
point of the roots h(Q) from the real axis to the upper half-plane due to the appearance of 
non-differential terms. In practice, this does not occur, however. 

Let us first consider a simple branching point &, where the two branches of the function A(n) have equal 
values. Considering a small neighbourhood of the point a and taking small changes AA(n), we need to 
examine only a quadratic equation for AA with coefficients that depend on a. At the point R = Rc, the 
discriminant should vanish. In the simplest case, in a small neighbourhood of the point RO the discriminant may 
be viewed as a linear function of a. Then both roots A (a) are real on one side of the branching point and both 
are complex on the other side. In this case, the allowance for additional terms containing k-’ will shift the 
branching point n by An- k-l, which may only result in a bounded growth rate of the solution, i.e. instability 
but not ill-posed behaviour. 
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The conclusion is false if the discriminant of the original problem does not contain a linear term and starts 
with a quadratic term. In this case, however, the point Sz, may be regarded as the result of confluence of two 
branching points. It follows from Sec. 4 that in this case the group velocity diagram is tangent to the boundary, 
i.e. the velocity of one of the weak shocks is zero in the coordinate system attached to the boundary. This 
corresponds to the boundary of the region of an evolving (and hence well-posed) shock. The cases when the 
function A(n) has real branching points of multiplicity greater than two have not been considered. 

6. LOSS OF SMOOTHNESS DUE TO DISTURBANCE IN REFLECTION FROM A 

NEUTRALLY STABLE BOUNDARY 

One of the important properties of the solution of problem (l.l), (1.2) in the case of neutral 
stability is the loss of smoothness associated with the appearance of one or several real zeros of the 
function D,(Q) that generate real poles of the solution @(Cl). For these cases, we do not have 
bounds that ensure the same smoothness for the solution as for the initial data [S, 93. Below we 
propose a simple, though non-rigorous, explanation of the phenomenon of loss of smoothness. 

The loss of smoothness is easily noted in the asymptotic form of the solution (1.8). The poles of 
the function U"(n) obviously make a contribution proportional to k in the evaluation of the inverse 
Laplace transform with respect to time (integration over w = kft): 

As a result, the function that corresponds to the residue and represents the response of the 
boundary will tend more slowly to zero a k+ CO than the function A (k, o) that represents incident 
disturbances. 

We will now propose a different interpretation of this issue, which makes it possible to trace the 
process over time. Since each pole isolates a certain value of &, and the part of the solution 
associated with the residue is obtained as an integral over an arbitrarily small circle around the point 
a,, the latter implies that this part of the solution is actually a sum of IZ plane waves corresponding 
to real h (me). 

Assume that there is at least one arriving wave (u) and one outgoing wave (v). This restriction is 
unim~rtant and is used only for simplicity. The boundary condition on x = 0 is written in the form 

(6.1) 

Here we assume that the derivatives with respect to x have been eliminated from the boundary 
conditions using equations for u and v. The function &(&I) defined by the operator on the 
left-hand side of the equality (6.1) has a zero at a= Sz 0. The function u (t, y ) is assumed to be 
known. Passing to a coordinate system that moves along the y-axis with velocity &, we obtain from 
(6.1) in this system that the partial derivative of v with respect to t is expressible linearly in terms of 
au /at and au lay_ Hence we see that the y-smoothness of the outgoing disturbance v may be an order 
of magnitude less than the smoothness of the arriving disturbance u. 

Note that a similar result follows directly from relationships (1.7), (1.8) after taking inverse 
Fourier-Laplace transfo~ations. 

‘7. ON THE POSSIBILITY OF DESCRIBING DISTURBANCES ON THE BOUNDARY BY A 

DIFFERENTIAL EQUATION 

Note that the left-hand side of the equation D,,,(o, k) = 0, where o = k0, defining the 
eigenvalues of problem (1.1)) (1.2) is not a polynomial in o and k, because it contains the quantities 
X(0, k) that depend in a complicated manner on their arguments and D, includes only X that 
correspond to outgoing waves. Therefore, a partial differential equation cannot be associated with 
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the above equation. However, some pseudodifferential equation satisfied by the solution U on the 
boundary can be associated with this equation: 

D,,’ (al&, d/r?y)u = f (y, t) (7.1) 

where u is any of the unknown functions, f describes the effect of the disturbances arriving on the 
boundary and the function D,l ’ 1s not a polynomial in its arguments, i.e. it is not a differential 
operator: it is only understood in the sense that the Fourier-Laplace transformation of D,’ 
produces D,,,(o, k). If all the roots Ai occur in some expression symmetrically, then by a well-known 
theorem in algebra [12] such symmetric algebraic functions of Aj can be expressed in terms of the 
coefficients of the equation satisfied by A, i.e. in terms of polynomials of o and k. Therefore, if we 
act on both sides of (7.1) by the product of the operators Dwil, which are identical with D,’ except 
that each contains other roots Aj so that the product is symmetrical in all roots, we obtain 

D (a/at, day) ZE DE,1Du.2’. . . D,i,r’DzQi = DwliDwzl. . . DJf (7.2) 

where, by the above argument, the operator D(dlat, Nay) is a polynomial in its arguments, i.e. a 
differential operator, Thus, the original mixed boundary-value problem (l.l), (1.2) has been 
reduced to a Cauchy problem for one differential equation (7.2) of a high order. For gas dynamics, 
this result has been obtained by a different method in [lo]. 

Note the special structure of the right-hand side of equality (7.2), which ensures that the solutions 
of Eqs (7.1) and (7.2) correspond. If we consider a problem with non-zero initial conditions, then 
certain constraints should be imposed on these conditions for Eq. (7.2) so that the solution also 
satisfies Eq. (7.1). 

Note that the use of Eq. (7.2) in practice is difficult for two reasons. First, the order of the resulting equation 
is very high: the number of factors in D is C,,“, where m is the number of waves moving away from the 
boundary and n is the order of the system. Second, the function D(o, k) has “redundant” zeros on other sheets 
of the Riemannian surface over the o plane which are not needed for stability analysis. These zeros, however, 
do not have an effect due to the special form of the right-hand side of Eq. (7.2). 

8. ON NEUTRALLY STABLE SHOCK WAVES IN MAGNETOHYDRODYNAMICS 

As an application, consider the existence of neutrally stable magnetohydrodynamic shocks. We 
will consider only fast shock waves with the magnetic field perpendicular to the shock surface on 
both sides. The shock wave is fast if [13] A2 = B2/(4,rrpu2) < 1, where B is the magnetic field strength 
and u and p are the velocity and the density of the gas behind the shock. 

It has been previously shown [5] that the magnetic field does not affect the stability criterion of 
such a shock wave: the equation for the disturbance eigenfrequencies is independent of B and has 
the form 

f2M2 - 6 - 1 - (6 - l)aM21z2 - 2 (6 - M2).z + (6 - l)(a - I)== 0 

2 = o/h - 1 (8.1) 

Here z is the perturbation frequency (in units of A) in the coordinate system attached to the gas 
behind the shock, u= p/p,,> 1 is the density ratio on the shock, 8 = -(pu)2(allp/ap), is the 
dimensionless derivative along the shock adiabatic and M < 1 is the Mach number behind the shock. 
The gas velocity u is taken as the characteristic velocity. 

For an ideal gas 

6 i 
(Y + 1) M.w~ 2+(Y---1)MoD2 

=qp o= 2+(y-l)Ad,s ’ Iv*= 2yM,a-y4-1 (8.2) 

where M, is the Mach number of the incident flow. Note that z satisfies the dispersion equation for 
magnetosonic waves: 
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z4-(A2 +&)(1+Jg)81+$(*+q$) =o (8.3) 

As we have shown above, the transition from stability to neutral stability occurs when the 
eigenfrequency equation (8.1) (the function 0,) has a root corresponding to a disturbance that 
separates the arriving and the outgoing waves, i.e. to a disturbance with zero x-component of the 
group velocity in the coordinate system attached to the shock wave: 

~~/~~ = 0 (8.4) 

Eliminating k,fh from the relationships (8.2), (8.3), and z = w/X - 1, we obtain 

( Az+&)Z’+(& _t $+ A’jz’-+23- 

-$$(A2 +&)z3++& 0 (8.5) 

For A2 = 0, Eq. (8.5) has the root z = -l/M*, which corresponds to gas-dynamic disturbances, 
and the four-fold root z = 0. Since the shock is fast, it may interact only with fast magnetosonic 
disturbances, which are continuously generated from gas-dynamic disturbances as A2 is increased. 
For small A’, we obtain for the relevant root from (8.5) 

2 = -BP (1 + cc), ct = W (4 - MZ)A4 < 1 (8.6) 

The condition for a transition from stability to neutral stability is that this solution equals the root 
of Eq. (8.1). Substituting (8.6) into (8.1), we obtain the value b = 6t that corresponds to the 
boundary between stable and neutrally stable shock waves 

61= 6, f cu (8.7) 
6 2w 

0 
_= oM‘J{- M”-1 

o~2_i_g_~z ’ c-- &+p_! 1-M” 

From (8,7) it follows that the magnetic field increases the region of neutral stability compared 
with the case when B = 0, when this region is located to the left of the point 6 = 6e. 

Substituting (8.2) into (8.7), we find that in an ideal gas a strong (M, + 1) shock transfers to 
neutral stability for a magnetic field strength 
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CALCULATION OF ROTATIONAL DERIVATIVES FOR 
“LOCAL” INTERACTION OF A FLOW WITH THE SURFACE 

OF A BODY? 

A. I. BUNIMOVICH and A. V. DUBINSKII 

(Received 2 July 1991) 

The rotational derivatives of the force and moment characteristics are calculated for solids of revolution 

that move at an angle of attack with small angular velocity. Formulas for rotational derivatives of the second 

order are derived and analysed for the general class of “local” interaction models of the flow with the 

surface of the body. 

THE DEVELOPMENT of analytical methods of calculation for rotational derivatives in the non- 
translational motion of bodies in free-molecular tlow is considered in [l-3]; corresponding methods 
for the intermediate rarefied gas flow region are developed in [2,4,5]. The approach proposed in [6] 
is intended for a fairly general class of “local” models describing the interaction of the flow with a 
rotating body; the implementation of this approach has led to working formulas for first rotational 
derivatives [6, 71. In this paper, the proposed approach is further developed for second rotational 
derivatives. 

In the attached coordinate system x1, x2, x3 shown in Fig. 1, the expression for the radius vector 
of a point on the surface of the body can be represented in the form 

c = 0 (p)xlo + p cos Bxpo _I- p sin 8x3O 

where xi’, xzo, x3’ are the unit vectors of the coordinate axes; the function a(p) defines the 
generator of the solid of revolution with a plane maximum middle section of radius R, and 

@ (0) := 0, a,’ (0) > 0, CD” (p) > 0, 0 < p < R, @' (R) < CQ 

The axes are oriented so that the translational velocity vector v, is in the x1, x2 plane making an 
angle IT - OL with the x1 axis 

voo = - v, cos cq” -j- va sin czxzo 
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